
Experimentally informed structure optimization of amorphous TiO2 films grown by atomic layer deposition

Jun Meng^{1†}, Mehrdad Abbasi^{2†}, Yutao Dong¹, Corey Carlos¹, Xudong Wang¹, Jinwoo Hwang^{2*}, Dane Morgan^{1*}

¹Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States ²Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States KEYWORDS: Amorphous titanium dioxide, photoelectrochemical, medium range ordering, structure optimization

XPS spectrums of free-standing TiO₂ film

Ti 2p core spectra was fitted with two peaks located at 458.4 eV and 464.2 eV corresponding to Ti $2p_{3/2}$ and Ti $2p_{1/2}$ with 5.8 eV peak separation which implied +4 valence for Ti. O 1s spectra showed the peak at 529.9 eV regarded as Ti-O bonds in TiO₂. Through the surface quantitative analysis on the integration of fitting peaks divided by the relative sensitive factor, the O/Ti ratio value was about 1.91, indicating stoichiometry TiO₂ with tiny oxygen vacancy.

Figure S1. XPS spectrums of free-standing TiO_2 film grown under 100°C. a, O 1s core spectra. b, Ti 2p core spectra.

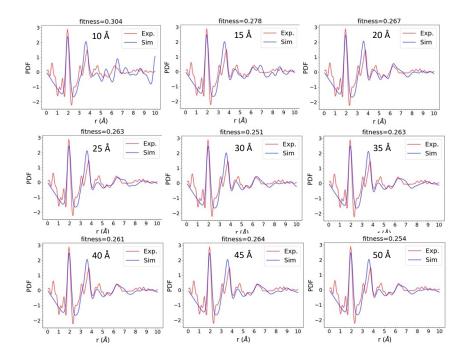


Figure S2. Simulated G(r) of melt-quenched a-TiO₂ model with different size.

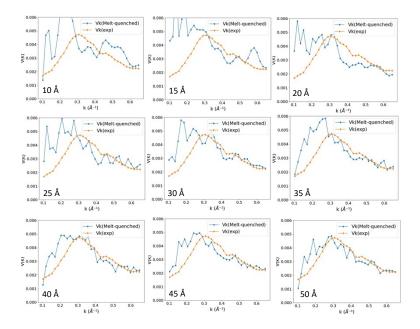


Figure S3. Simulated V(k) of melt-quenched a-TiO₂ model with different size.