Self-Activated Electrical Stimulation for Effective Hair Regeneration via a Wearable Omnidirectional Pulse Generator

Guang Yao,†§#, Dawei Jiang,†∥#, Jun Li,† Lei Kang,‡ Sihong Chen,§ Yin Long,‡§ Yizhan Wang,† Peng Huang,‖ Yuan Lin,§ Weibo Cai,*∥ and Xudong Wang*†

†Department of Materials Science and Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
‡Department of Radiology, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
§State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China
∥Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Carson International Cancer Center, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China

Supporting Information

ABSTRACT: Hair loss, a common and distressing symptom, has been plaguing humans. Various pharmacological and non-pharmacological treatments have been widely studied to achieve the desired effect for hair regeneration. As a nonpharmacological physical approach, physiologically appropriate alternating electric field plays a key role in the field of regenerative tissue engineering. Here, a universal motion-activated and wearable electric stimulation device that can effectively promote hair regeneration via random body motions was designed. Significantly facilitated hair regeneration results were obtained from Sprague–Dawley rats and nude mice. Higher hair follicle density and longer hair shaft length were observed on Sprague–Dawley rats when the device was employed compared to conventional pharmacological treatments. The device can also improve the secretion of vascular endothelial growth factor and keratinocyte growth factor and thereby alleviate hair keratin disorder, increase the number of hair follicles, and promote hair regeneration on genetically defective nude mice. This work provides an effective hair regeneration strategy in the context of a nonpharmacological self-powered wearable electronic device.

KEYWORDS: hair regeneration, motion-activated device, physical approach, rats and nude mice, growth factors

Accepted: August 30, 2019

Received: May 21, 2019

DOI: 10.1021/acsnano.9b03912

lopecia, commonly known as hair loss, is classified as a dermatological disorder due to a growth factor deficiency and/or hair cycle disorder.1−3 It is a common disease for both men and women throughout the world. In the United States, about 35 million men and 21 million women suffered from hair loss in 2015.4 Currently, major treatments for hair loss include topical treatments, oral medicine, and hair transplant to re-establish healthy hair growth cycles.5−7 Due to the non-invasive nature and high absorbability, topical treatments are the most common choice by patients. Minoxidil (MNX) and oral finasteride are the two drugs approved by the United States Food and Drug Administration and widely used to prevent and treat hair loss.5,7 However, since MNX and finasteride could only reduce hair loss instead of significantly increasing the number of hair follicles (HFs), patients are thus required to continuously apply drugs for lasting effects.8,9 Moreover, MNX and finasteride may induce severe side effects such as sexual dysfunction, hypertrichosis, and fetus defect.5,7,10 As an alternative of taking medication, hair transplant may help patients grow new hair, but several rounds of surgery are needed, which are associated with high cost, discomfortness, and time commitment.7 Therefore, non-invasive, nonpharmacological, cost-effective, and convenient approaches are always desired for treating hair loss. Currently, several promising nonpharmacological treatments such as thermal, laser, and electrical stimulation have been developed and are gradually moving into clinical investigation/practice.8,11−13 Among them, electric stimulation can induce a non-invasive biological effect named electrotrichogenesis (ETG). Though the optimal ETG parameters have not been clinically confirmed,
alternating electric field (EF) in the range of 0.1−10 V/cm and frequencies of <15 Hz are commonly used, which imposes negligible tissue damage. 14,15 ETG could enhance the influx of calcium ions into the dermal papilla cells via voltage-gated transmembrane ion channels, facilitate ATP synthesis in mitochondria, activate protein kinases, and stimulate protein synthesis and cell division. 8,16,17 As a result, the ETG effect is believed to be able to regulate secretion of multiple hair growth factors, promote HF proliferation, prolong the anagen stage, and ultimately promote hair regeneration. 8,18,19 Although state-of-the-art extracorporeal treatment apparatuses have miniaturized their sizes to accommodate themselves to wearable devices, the entire system remains bulky and inconvenient for daily treatment as restricted by battery capacity and output current. 20−22

Here, a universal motion-activated and wearable electric stimulation device (m-ESD) that can effectively promote hair regeneration via random body motions was designed. Significantly facilitated hair regeneration results were obtained from Sprague−Dawley (SD) rats and nude mice. Higher HF density and longer hair shaft length were observed on SD rats when the m-ESD was employed. We also showed that m-ESD can promote HF proliferation and improve the secretion of vascular endothelial growth factor (VEGF) and keratinocyte growth factor (KGF) and thereby alleviate hair keratin disorder, increase the number of HFs, and promote hair regeneration on genetically defective nude mice. While rats and nude mice models were used in this study, human reconstructed skin in a mouse model will be a valuable next step to evaluating the human HF generation effect under this kind of electric stimulation. 23,24

RESULTS AND DISCUSSION

The m-ESD consists of two modules: an omnidirectional triboelectric generator (OTG) acting as the electric pulse generator and a pair of interdigitated dressing electrode providing spatially distributed EF (Figure 1a). The detailed fabrication process of the m-ESD is depicted in Figure S1. The structure details and key components of the OTG are
Figure 2. Voltage output performance of the omnidirectional m-ESD. (a) Voltage output of the m-ESD stretching at different directions, velocities, and distances (d is the displacement distance and R represents the electrode radius). (b) Voltage peaks with regard to different displacement distances. (c) Schematic setup of the m-ESD system for hair regeneration. (d) Optical image of a SD rat wearing the m-ESD. (e) Voltage output recorded from the m-ESD on an active rat (awakened) and driven by a commercial shaker, respectively. (f) Stability and durability tests of the m-ESD.

illustrated in Figure 1b. The OTG had two triboelectric layers, which were connected by soft Ecoflex bands. The Ecoflex band had a very small modulus (34.9 kPa) (Figure S2a), which allowed arbitrary stretching, bending, and twisting within ∼900% strain limit.25,26 A pair of concentric gold (Au) electrode arrays on a nanostructured polytetrafluoroethylene (PTFE) film were designed as the charge transfer electrode (CTE) to collect the electrostatic charge generated during the movements. The CTE and interdigitated electrode were mounted on a polyethylene terephthalate (PET) substrate as the CTE layer. An array of concentric copper (Cu) ring electrodes was fabricated on a square PET acting as the bottom triboelectric layer for triboelectric charge generation (CGE). The entire OTG was encapsulated by polyimide films. The characterization results of the m-ESD cross section, the thickness of Au electrode, and the surface of the PTFE film are shown in Figure S2b–d. A typical m-ESD where the CTE and CGE layers were stretched apart from each other is shown in Figure 1c.

The mechanical behavior of the m-ESD was evaluated first. Three-dimensional finite element analysis (FEA) showed that when the m-ESD was stretched along the length directions, the strain was primarily distributed on the Ecoflex bands rather than on the PET substrates (Figure S3a). This ensures the stress subjected by the device can effectively induce the desired displacement of the OTG module. The uniaxial stretching behaviors were tested along length and width directions to generate electric pulses. The movements in the length and width directions generated nearly the same force−distance curves with a slope of only 0.08 N/mm (Figure S3b), indicating excellent stretchability and symmetrical mechanical responses. Both computational and experimental measure-
CGE moved against CTE back and forth, electric pulse stretching velocity of 0.1 m/s for 0.1 cm displacement. As the μ500 of four designs was 4, 6, 10, and 12. Correspondingly, the outputs = 1 mm). All data in (e) are presented as mean ± s.d.

Therefore, a periodic and cyclic alternating voltage output can be obtained while the two-layers of CTE would lead to local charge unbalance. Under open circuit condition, the unbalance local charge would generate an electric potential difference between the two sets of CTE (Figure 1f). When nt = 4 and d1 = 1.25 mm, Vpp was ~340 mV. Vpp reached the maximum of 430 mV when nt = 6 and d1 = 830 μm. Vpp then declined to 300 mV and 200 mV as d1 reduced to 500 and 420 μm, respectively. The reduction of Vpp could be attributed to the reduced surface area for charge collection. Considering the suitable Vpp and frequency, the OTG electrode with a dG of 1 mm (dG = 2d1 = 1 mm, nG = 5, nt = 10) and a Vpp of 300 mV was chosen for further animal studies. In addition, the pulse width of output was kept at 20 ms, which was within the reported pulse width range that could provide an effective stimulation with minimal side effects.8,18,29

The omnidirectional pulse generation capability of the m-ESD was then investigated under three different electrode traveling distances (d = 0.5R, 1.0R, and 2.0R, where R is the electrode radius). The relationships between the voltage, moving velocity, and directions were plotted for each d (Figure 2a). Similar plots were received for all three d, suggesting Vpp was not sensitive to the distance of traveling. The number of peaks in each voltage envelop increased from 3 to 5 to 10 as d increased from 0.5R to 1.0R to 2.0R, respectively (Figure 2b). A strong relationship between Vpp and velocity can be clearly identified. For each d, Vpp increased monotonically from 80 mV to 720 mV, as the velocity raised from 0.05 to 0.4 m/s. This was consistent with other literature reports that higher velocity facilitates efficient charge separation.32–34 Most importantly, the equal-voltage lines in each plot exhibited a quasi-circular shape, confirming that Vpp was nearly the same when the m-ESD moves along all possible directions in plane. This result demonstrated that our m-ESD was able to produce stable voltage pulses in response to random lateral motions, which is perfect for interfacing with body movements.

![Figure 3. Hair regeneration effect of SD rats under the stimulation of the m-ESD. (a) Schematic illustration of HF in skin. (b) Histomorphology schematic of the hair cycle including anagen, catagen, and telogen stages. (c) Schematic diagram of a series of interdigitated electrodes (1–4) with different gap widths. (d) Optical images of the rat with removed hair (day 0, left) and after 2-week treatment (right). (e) EF-stimulated hair shaft length as a function of the EF intensity (n = 6). (f) Top and side views of EF distribution (gap width is 1 mm) simulated by ±150 mV. (g) EF strength at different distances perpendicular to the plane of the interdigitated electrode (gap = 1 mm). All data in (e) are presented as mean ± s.d.](Image 139x516 to 486x749)
The m-ESD was then applied to rats for hair regeneration studies. As schematically shown in Figure 2c, the m-ESD was attached to the backside of the rat. The CGE layer was affixed to the head of the rat, and the CTE layer was affixed to the neck and back area. Based on this setup, all random movements of the head and neck could generate electric pulses with similar amplitudes. These electric pulses were transmitted to the stationary dressing pad and provide alternating EFs to the exposed skin to stimulate hair regeneration. A SD rat wearing the m-ESD for hair regeneration test is shown in Figure 2d. The voltage output performance was monitored first when the rat was at its normal activity (Figure 2e and Movie S1). The voltage output from the rat’s movements had a Vpp of 320 mV, similar to the voltage output induced by a computer-controlled shaker. This further confirmed that our m-ESD could effectively convert random body motions into stable electric pulses. The long-term stability of our m-ESD was tested by a commercial shaker. After 28 days of continuous operation, all the devices showed good structural integrity without any observable defects. The nearly unchanged voltage amplitude confirmed the excellent stability and durability of the m-ESD (Figure 2f and Movie S1).
Figure 5. Hair regeneration effect of nude mice under stimulation of m-ESDs. (a) Optical images of nude mice at different treatment times. (b) H&E staining of longitudinal slices of the epidermis under different stimulation time (scale bar = 200 μm). (c) Heat map of the hair shaft length as a function of time under the treatment regions of m-ESD, MNX, VD₃, and NS. (d) Final hair shaft length of nude mice in different treatment groups (n = 6). (e) HF proliferation percentage of different treatment groups as a function of time (n = 3). Inset shows the HF proliferation percentage at the 18th day. All data in (e) are presented as mean ± s.d. In (d) and the inset of (e) (box plots), dots are the mean, center lines are the median, box limits are the lower quartile (Q1) and upper quartile (Q3), and whiskers are the most extreme data points that are no more than 1.5 × (Q3 − Q1) from the box limits. Statistical analysis was performed by two-tailed unpaired Student’s t tests; n.s., nonsignificant (P > 0.05); *P < 0.05, **P < 0.01, ***P < 0.001.
The highly flexible and stretchable device also induced minimal influences to the rat’s normal daily behavior (Movie S3).

A typical hair growth begins inside the avascular HF and depends on the nutrition supplied by blood vessels (Figure 3a).15 Hair undergoes periods of cyclic anagen (growth), catagen (regression), and telogen (resting) stages (Figure 3b).16,17 It is known that the EF can act on the skin and promote HF proliferation and hair regeneration. Meanwhile, dermal papilla cells of HF are believed to be the most susceptible to the effects of electric stimulation in the skin.17,18 In order to verify that the EF induced by our m-ESDs can promote HF transformation from the telogen stage to the anagen stage to achieve rapid hair regeneration, systematic experimental study of hair regeneration based on SD rats was conducted. First, the back hair of 7 week-old SD rats was shaved and treated with removal cream, which brought the hair follicles to the telogen stage.18,19 To ensure the suitable distribution and intensity of EFs for systematic research, electrodes with different gaps (8 mm, 4 mm, 1 mm, and 0.5 mm) were employed to create an EF parallel to the shaved skin surface (Figure 3c). Considering that the V_{pp} is 300 mV at a velocity of 0.1 m/s, the corresponding peak-to-peak EF strengths were 0.375, 0.75, 3, and 6 V/cm, respectively. Both hair coverage (Figure 3d) and hair length (Figure 3e) measurements revealed that the 3 V/cm EF had the most significant hair regenerative effect. This optimal EF might be attributed to the mostly facilitated calcium influx under favorable EF strength, which provides better stimulations to cell proliferation, hair growth factor secretion, and hair regeneration.13,14 FEA simulation (Figure 3fg) showed that there was no significant attenuation for EF strength within 4 mm deep into the skin surface. This thickness of insulating polymide film was 20 μm, which was almost 2 orders of magnitude less than the distance that the EF can effectively penetrate (4 mm). Therefore, the electric intensity applied on skin tissue was almost unchanged. As a control, rats wearing sham m-ESDs were monitored for 2 weeks, and no obvious signs of hair regeneration were observed (Figure S7). We also showed that the hair regeneration exactly followed the EF distribution, as evidenced by a W-shaped hair pattern when a W-shaped electrode was used (Figure S7).

The hair regeneration efficacy of our m-ESD was further compared to conventional hair regeneration medicines including MNX, vitamin D₃ (VD₃), and normal saline (NS) ($n = 3$ for each group). The four different treatments were applied to four regions on the back of SD rats as shown in Figure 4a and Figure S8. After 3 weeks of treatment, hair in the m-ESD region was significantly longer and denser than the other three treated regions (Figure 4a, bottom). Hematoxylin and eosin (H&E) staining were conducted on the rat skin samples to reveal the hair regeneration behavior as a function of time (Figure 4b). According to the histomorphometric classification of different stages (Figure 3b), anagen HFs are morphologically distinct from those in the telogen stage. Compared to the control groups (MNX, VD₃, and NS), HFs under m-ESD transformed from the telogen stage to the anagen stage in the first week, while HFs in other groups maintained in the telogen stage. Heat map illustrates the regeneration trend of the hair shaft in the four regions. It is obvious that the m-ESD induced a much faster hair regeneration rate compared to the other three groups (Figure 4c). The average hair shaft length measured after 3 weeks of treatment revealed that the hair shaft at the m-ESD region was 15.4 ± 2.1 mm, significantly longer than those in the control groups (8.7 ± 1.2 mm for MNX, 6.9 ± 0.9 mm for VD₃, and 3.4 ± 0.4 mm for NS, Figure 4d). HF proliferation percentage was calculated from the H&E lateral skin slices (Figure S9) at different time points to study the HF proliferation effect in different stimulation regions. According to others’ previous work,13,18,40 the HF proliferation in Figure 4e and Figure 5e was calculated according to the formula: $P_{HF} = (D - D_{NS})/D_{NS} \times 100\%$, where D represents the density of HF in the m-ESD, MNX, and VD₃ groups, respectively, while D_{NS} represents the density of HF in the NS group (Figures S9 and S14). As shown in Figure 4e, the HF density in the m-ESD region quickly rose to 76% in the first week and reached as high as 96% proliferation after 3 weeks; whereas, MNX and VD₃ induced a much slower proliferation rate and only reached 68% in the same 3-week frame. In addition, compared to the reported electrical stimulation and MNX approaches for clinical hair regeneration, our m-ESD demonstrated more rapid and generally more effective hair proliferation with a much shorter treatment time (Figure 4f).16,18,19,41–43 This analysis confirmed that the self-generated electric pulses from m-ESD could significantly promote hair regeneration and HF proliferation in SD rats.

After confirming the positive effect on hair regeneration on SD rats, we further investigated how the electric pulses from m-ESD can influence the hair regeneration on genetically defective nude mice with a 21-day hair cycle.40,41 The nude mice lack fur development due to deficiency of growth factors. On the skin of nude mice, the hair shafts bend and coil at the sebaceous gland and fail to penetrate the epidermis.45,46 In nude mice, the hair follicles transform from the telogen stage to the anagen stage.38,39 To ensure the suitable configuration and geometry (Figure S10a), mice could generate similar electric pulses as the rats’ device under their regular movements (Figure S10b, Movies S4 and S5), and the m-ESD on nude mice exhibited a good stability (Figure S10c and Movie S6). The m-ESD-stimulated hair regeneration behavior was investigated during the 21-day growth period, in comparison to the treatments of MNX, VD₃, and NS ($n = 4$ for each group). For the model of nude mice, the dorsal hair of nude mice was observed until completion of a hair growth cycle. The hairs disappearing was a result of hair growth entering the catagen and telogen phases.40,44 Following catagen, follicles lie dormant in the telogen phase, and HF stem cells are activated at the telogen-to-anagen transition to initiate a new round of hair growth.37 This phenomenon suggests that our electrical stimulation only facilitates hair growth but had minimal influences to the natural hair growth cycle. Longitudinal photos clearly showed that the m-ESD yielded significantly longer hair with higher density and longer appearing time than other control regions (Figure 5a and Figure S11). It should be noted that the location on the mice back had negligible impacts to the hair regeneration (Figure S12). The H&E staining of longitudinal slices of skin in different stimulated regions (m-ESD, MNX, VD₃, and NS) was conducted at different treatment time points (Figure 5b and Figure S13). After 3 days of treatment, the hair at the m-ESD-covered region transformed from the telogen stage to the anagen stage, while the hair in control regions still remained at the telogen stage. From day 6 to day 12, the hair at the m-ESD region still remained at the anagen stage; whereas the HFs...
started to shrink in the control regions (MNX, VD₃, and NS). As the hair in the m-ESD region gradually entered the catagen stage on the 15th day, the hair in control regions completed the anagen stage on day 12 and completely entered the telogen stage on day 15. These results showed that the m-ESD stimulations could effectively facilitate the transformation of HFs from the telogen stage to the anagen stage and extend the length of the anagen stage, that is, more fully developed hair with longer lifetime. A heat map of the hair shaft length for different treatments further quantified that faster and significantly longer hair growth was promoted by the m-ESD compared to other treatments (Figure 5c). After 9 days of treatment, the hair shaft under m-ESD was 1.81 ± 0.15 mm, nearly twice as long as those in the control groups (0.97 ± 0.17 mm and 0.93 ± 0.10 mm for MNX and VD₃, respectively) (Figure 5d). HF proliferation percentage of different groups over time (Figure 5e) was calculated from the H&E slices (Figure S14). The HF density of the m-ESD group showed a significant improvement after 12 days and topped at 33% at the 18th day of treatment. In contrast, the HF proliferation percentage in the MNX group and VD₃ group remained at nearly constant values of 11% and 7%, respectively. This analysis further confirmed that the m-ESD can enhance the HF cell proliferation, even overcoming the genetic defect (e.g., hair keratin disorder) to develop visible hair on nude mice.

The accelerated hair regeneration and improved HF proliferation under the stimulation of m-ESD could be attributed to the EF regulation of growth factors secretion. To test this hypothesis, secretion of two main growth factors: keratinocyte growth factor (KGF), an important endogenous mediator of HF development and differentiation, and vascular endothelial growth factor (VEGF), a major mediator of HF growth and cycling, were studied.³⁴,⁴⁰ Both factors together promote hair development and growth and increase HF numbers and hair size.³⁵,⁴⁵ Many types of cells can secrete growth factors for cell proliferation and differentiation.⁴⁸−⁵² In this work, the follicular dermal papilla cells play the most crucial role in secreting growth factors and promoting hair regeneration.³⁵,⁴⁵,⁵³ KGF and VEGF expressions were investigated from the HFs at different treatment regions and imaged at various time points from day 3 to day 15 (Figure 6a,c). KGF is a member of the fibroblast growth factor (FGF) family that specifically induces proliferation of a wide variety of epithelial cells, including keratinocytes within the epidermis and HFs.⁴⁵,⁴⁶ In the developing HF, KGF is localized to HF and acts specifically on keratinocytes throughout the epithelial compartment of the HF. Thus, fluorescence intensity represents the concentration of the KGF, and the follicular epithelium (keratinocytes) has a stronger fluorescence intensity than that of follicular dermal papilla cells. Based on the fluorescence intensities, KGF and VEGF expression levels could be quantified (Figure 6b,d). As shown in Figure 6b, in the early anagen stage (day 3), no significant differences of KGF expression level were observed in different stimulation regions. At day 6, the KGF expression in the m-ESD region exhibited a sharp increase and reached the maximum at day 9, followed by a slight declination in the late anagen stage (day 12) and early catagen stage (day 15). Nevertheless, it maintained the highest level throughout the entire testing period. For the control regions, the KGF expression remained at a significantly lower level during most of the study period. Though jumps of the KGF level were observed from the MNX

![Figure 6. Growth factor expression in skin of nude mice under stimulation of m-ESDs. (a) Confocal imaging of the KGF expression as a function of time for different treatments. (b) Fluorescence intensity of KGF quantitative expression (n = 3). (c) Confocal imaging of the VEGF expression as a function of time for different treatments. (d) Fluorescence intensity of VEGF quantitative expression (n = 3). All data in (b) and (d) are presented as mean ± s.d.]
and VD3 treated regions (day 12 for MNX, day 6 for VD3), the high expression levels cannot be maintained for a sustained period. As the only endogenous growth factor for normal development and differentiation of HFs, KGF could stimulate keratinocytes within HFs and sebaceous glands to eliminate genetic keratin disorder. Therefore, m-ESD was able to motivate the hair to penetrate the epidermis, promoting effective hair regeneration with visible dense hair on the skin of nude mice.

The VEGF expression exhibited a different trend during the testing period. As shown in Figure 6d, the VEGF expression in m-ESD region rapidly increased shortly after the stimulation. Up to day 6, its level was significantly higher than all the other control areas. Nevertheless, a constant decrease of VEGF expression in m-ESD region was observed after day 9, whereas MNX brought the VEGF level up to a similar level from the late anagen stage (day 12). When entering the catagen stage (day 15), all the m-ESD, MNX, and VD3 regions exhibited a similar VEGF expression level, and the NS treated region had negligible VEGF remaining. The high VEGF level at the anagen stage is particularly important to enhance the perifollicular vascularization to meet the increased nutritional needs of HFs to achieve fast hair growth and increased HF density. These results confirmed that compared to conventional MNX and VD3 simulations from our m-ESD can more effectively promote growth factor secretion and further prolong endogenous signaling to achieve accelerated hair regeneration.

CONCLUSION

In this work, we developed a self-powered omnidirectional m-ESD for accelerated hair regeneration on SD rats and nude mice. The m-ESD driven by irregular head motions generated consistent AC voltage pulses, which was directly used as a non-invasive EF to stimulate hair regeneration via a pair of interdigitated dressing electrodes. On shaved SD rats, the m-ESD was able to facilitate hair transformation from the telogen stage to the anagen stage and thereby accelerate hair growth rate and promote HF proliferation. Compared to the other conventional pharmacological MNX and VD3 treatments, the hair growth rate in the m-ESD region was 0.73 mm per day (0.41 mm/day for MNX and 0.33 mm/day for VD3), and the final hair shaft length under m-ESD was 1.8 times and 2.2 times longer than those treated by MNX and VD3, respectively. Meanwhile, the HF density from m-ESD stimulating was 141% of the MNX and VD3 regions.

Importantly, the m-ESD stimulation could overcome the genetic keratin disorder and achieve effective hair regeneration on nude mice. This phenomenon can be attributed to a paracrine mechanism of hair growth factors (VEGF and KGF). KGF, as the only endogenous growth factor for HF development and differentiation, exhibited a higher expression level under m-ESD in the entire anagen stage, which can effectively normalize keratin differentiation to stimulate keratinocytes within HFs, eliminate genetic keratin disorder, and further develop visible hair with longer lifetime. VEGF showed a rapid increase from the beginning of the anagen stage, offering an advantage for induction of angiogenesis, and can enhance perifollicular vascularization to meet the increased nutritional needs of HFs for rapid cell division during anagen stage, leading to high hair growth rate and HF density. In addition, hair follicular stem cells (HFSCs) also play an important role in hair regeneration, such as reversing the pathological mechanism and regenerating HFs. To further understand the influences of the low-frequency alternating electrical fields on the HFSC activities, the HFSCs will provide valuable insights to this intriguing technology. In general, our development provided an effective hair regeneration strategy in the context of a nonpharmacological self-powered wearable electronic device. It is expected to be able to quickly evolve into a practical and facile solution to address the hair loss problem suffered by billions of people all over the world.

EXPERIMENTAL SECTION

m-ESD Fabrication. PET (100 μm) and nanostructured PTFE substrates (50 μm) were prepared and sputtered with Au film (230 nm) to fabricate the interdigitated electrode and CTE, respectively. The CTE was installed on the PET substrate as the CTE layer, then the concentric Cu film (20 μm) was attached on a square PET substrate as the CGE layer. The two layers were assembled together and encapsulated with biocompatible polyimide film (20 μm). The top and bottom triboelectric layers were connected with Ecolflex bands 6 × 3 × 0.4 (L × W × T) mm. A schematic flowchart of the specific fabrication process is shown in Figure S1. Due to the different body sizes of SD rats and nude mice, m-ESDs with different parameters match the body sizes. Device dimensions were 6 × 4 (L × W) cm² for SD rats and 2.5 × 1.5 (L × W) cm² for nude mice. In particular, the PTFE surface was treated by reactive ionic etching to introduce nanostructured features to enhance the electrical output. Specifically, 5 nm Au was sputtered on PTFE film first. Then the PTFE film was treated in an inductively coupled plasma chamber with mixed etching gases of Ar, O₂, and CF₄ for 30 s.

Computational and Experimental Mechanical Properties of m-ESDs. The computational mechanical properties were simulated by FEA, which ensures the reliability of the device (Figure S3a). For the experimental mechanical properties, using an Ecolflex strip with 30 mm original length and 0.4 mm thickness, which was stretched to 120 mm, the strain was calculated according to the formula strain = ΔL/L (Figure S2a). For the m-ESDs, the top and the bottom layers were fixed and stretched along opposite directions. The m-ESD of SD rats was stretched by 1 cm (Figure S3b).

Cell Morphology and Immunofluorescence Staining. After 3T3 cells were cultured on encapsulation or cell plates in 24-well plates, cell morphology was observed directly using an inverted optical microscope (Nikon Eclipse Ti–U, Japan). The cytoskeleton and nucleus were stained with Texas red-X phalloidin (591/608 nm) and blue fluorescent Hoechst (352/461 nm) (ThermoFisher Scientific) respectively. The samples were fixed with 2–4% formaldehyde for 15 min and then rinsed three times with prewarmed PBS. The samples were incubated with Texas red-X phallloidin (100 nM) and Hoechst (50 nM) for 30 min at 37 °C. After staining, cells were rinsed with prewarmed buffer for 3 times and imaged using a Nikon AIRS confocal microscope (Figure S5a).

MTT Assay. After 3T3 cells were cultured on the packaging film on 24-well plates, a 3-(4,5-dimethylthiazol-2-azathiol)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay (ThermoFisher scientific) was performed to examine cell proliferation. After incubation at 37 °C in a humidified atmosphere with 5% CO₂ for up to 3 days, 100 μL of MTT solution was added to each well. After 4 h of incubation, the medium was removed, and DMSO (500 μL/well) was added to dissolve the precipitated formazan. The optical density (n = 3) of the solution was evaluated using a microplate spectrophotometer at a wavelength of 490 nm (Figure S5b).

Electrical Output Performance Test and EF Simulation. Open-circuit voltage was monitored when the m-ESD was stretched by commercial shaker and when the rat wearing the m-ESD was awakened. Open-circuit voltage was measured by a portable oscilloscope (Agilent, DSO1012A, internal resistance = 1 MΩ). The intensity and distribution of the EF in a real biological environment was simulated by ANSYS HFSS with an environmental dielectric constant of 80.

Animals and Diets. All animal experiments were conducted under a protocol approved by the University of Wisconsin.
Hair Shaving and Removal. A 15 cm² area of the hair from the dorsal portion of all the SD rats was shaved with electric hair clippers. Then the hair removal cream was evenly applied to the back. After 10 min, the back was cleaned with PBS solution.

Fixing Device on the Back of Animals (Rats and Mice). In brief, anesthesia was induced by inhalation of 2–5% isoflurane and maintained with 2% isoflurane. Following anesthesia, animals were fixed in a prone position. The back of animals was scrubbed with iodine scrub and then alcohol prior to surgery. The device was placed on the back of the animals. The bottom layer of the m-ESD was sutured on the head skin of the animal, and the edge of the m-ESD was sutured on the back skin of the animal. For the m-ESD group, the two triboelectric layers were connected normally to the electrode. For the sham group, the device was sewed with insulated wires connecting to the electrode. The entire procedure lasted approximately 10 min.

Drug Application. 5% MNX solution was purchased from Kirkland Signature. The natural liquid VD₃ was purchased from Advanced Trichology. 0.2 mL was applied to the treatment area of the respective groups once a day, and a control group received no treatment. The hair regeneration of rats was monitored at days 7, 14, and 21, while for mice, hair regeneration was monitored at days 3, 6, 9, 12, 15, and 18 after the beginning of topical treatment. At each time point, rats and nude mice were sacrificed, and skin samples were collected for tissue sectioning and staining. Digital pictures of skin and hair were also taken, and hair samples were collected for qualitative and quantitative analysis.

Histological Staining of Skin Samples. Skin samples were collected from the back of rats and nude mice after m-ESD, MNX, and VD₃ treatment. Control skin on the back was also collected with no treatment at the same time points. Tissues were embedded in Optimal Cutting Temperature compound (Sakura Fintek) and frozen overnight. Sectioning and H&E staining of all skin samples were performed by the University of Wisconsin-Madison Experimental Pathology laboratory. H&E slides were observed directly using an inverted optical microscope (Nikon Eclipse Ti–U, Japan).

For immunofluorescent staining, frozen skin samples of 10 μm thickness were fixed with cold acetone for 5 min, washed with cold PBS, and then blocked with 2% donkey serum for 1 h at room temperature. Slices were then incubated with rabbit-antirat/mouse VEGF antibody (Thermo Fisher) or rabbit-anti rat/mouse KGF antibody (Thermo Fisher) at 4 °C overnight. After washing with cold PBS for three times, slices were then stained with Alexa488-labeled donkey-anti-rabbit antibody (Thermo Fisher) for 1 h. After three rounds of washing with cold Biotechnology and covered with cover glasses for imaging using a Nikon A1R confocal microscope (Nikon instruments).

Quantitative Analysis of KGF and VEGF Expression Levels. ImageJ software (version 1.52e) was used to quantify the expression levels of KGF and VEGF based on their fluorescent intensities, which were averaged over at least three different areas of a slide and expressed as mean ± standard deviation.

Statistical Analysis. Statistical analysis was performed by two-tailed unpaired Student’s t tests; n.s., nonsignificant (P > 0.05); *P < 0.05; **P < 0.01; ***P < 0.001. In box plots, the dot is the median, box limits are the lower quartile (Q1) and upper quartile (Q3), and whiskers are the most extreme data points that are no more than 1.5 × (Q3 − Q1) from the box limits.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.9b03912.
under award number P30CA014520. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. G.Y. and Y.L. thank the National Basic Research Program of China (973 Program) under grant no. 2015CB351905.

REFERENCES

(1) Lei, M.; Chuong, C. M. Aging, Alopecia, and Stem cells. Science 2016, 351, 559.