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S1: Fully coupled finite element analysis (FEA) method 

Fully coupled FEA method has been used to calculate the piezoelectric effects in most 

commercial software 
1,2

. For each node (𝑖) in an element four degrees of freedom are defined, 

including three displacements (𝑢𝑖𝑥 , 𝑢𝑖𝑦, 𝑢𝑖𝑧) and one electric potential (∅𝑖).  

According to the variation principle and virtual work principle, the static governing 

equation for piezoelectric materials can be written as 

∫ [{𝛿𝜀}𝑇[𝑐𝐸]{𝜀} − {𝛿𝜀}𝑇[𝑒]𝑇{𝐸} − {𝛿𝐸}𝑇[𝑒]{𝜀} − {𝛿𝐸}𝑇[𝜒]{𝐸} − {𝛿𝑢}𝑇{𝑃𝑏} + 𝛿∅𝜎]
𝑉

𝑑𝑉

− ∫ {𝛿𝑢}𝑇{𝑇}
𝑆1

𝑑𝑆 + ∫ 𝛿∅𝜎
′

𝑆2

𝑑𝑆 − {𝛿𝑢}{𝑃} + 𝛿∅𝑄 = 0                               (S1) 

where {𝑃𝑏}, {𝑇} and {𝑃} are body force, surface traction and point force respectively; and 𝜎,  𝜎
′
 

and 𝑄 are body charge, surface charge, point charge respectively.  

With the help of the shape functions [𝑁𝑢] and [𝑁∅] in an element, the displacement field {𝑢} 

and the electric potential ∅  can be obtained based on the displacement values {𝑢𝑖}  and the 

electric potential {∅𝑖} at each node by following equations. 

{𝑢} = [𝑁𝑢]{𝑢𝑖}                                             (S2) 

 ∅ = [𝑁∅]{∅𝑖}                                                (S3) 
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After differentiation of equation (S2) and (S3), we can acquire the strain field {𝜀} and the electric 

field {𝐸}.   

{𝜀} = [𝐵𝑢]{𝑢𝑖}                                             (S4) 

{𝐸} = −[𝐵∅]{∅𝑖}                                        (S5) 

where [𝐵𝑢] and [𝐵∅] are the shape functions derivatives.  

Substitute equations (S2), (S3), (S4) and (S5) into (S1) and the classic fully coupled FEA 

equations for piezoelectric effect is reached as  

[𝐾𝑢𝑢]{𝑢𝑖} + [𝐾𝑢∅]{∅𝑖} = {𝐹𝐵} + {𝐹𝑆} + {𝐹𝑃}                            (S6) 

[𝐾∅𝑢]{𝑢𝑖} + [𝐾∅∅]{∅𝑖} = {𝑄𝐵} + {𝑄𝑆} + {𝑄𝑃}                          (S7) 

where the terms are defined as below 

[𝐾𝑢𝑢] = ∫ [𝐵𝑢]𝑇[𝑐][𝐵𝑢]
𝑉

𝑑𝑉 

[𝐾𝑢∅] = ∫ [𝐵𝑢]𝑇[𝑒][𝐵∅]
𝑉

𝑑𝑉 

[𝐾∅𝑢] = ∫ [𝐵∅]𝑇[𝑒][𝐵𝑢]
𝑉

𝑑𝑉 

[𝐾∅∅] = − ∫ [𝐵∅]𝑇[𝜀][𝐵∅]
𝑉

𝑑𝑉 

Here [𝐾𝑢𝑢] and [𝐾∅∅] are stiffness matrix and dielectric matrix respectively; [𝐾𝑢∅] and [𝐾∅𝑢] are 

piezoelectric matrices. {𝐹𝐵}, {𝐹𝑆} and  {𝐹𝑃}  are body force vector, surface force vector and 

concentrated force vector respectively; {𝑄𝐵}, {𝑄𝑆}  and {𝑄𝑃}  are body charge vector, surface 

charge vector and point charge vector respectively. 

Through equation (S6) and (S7) we can calculate the displacement field and electric field 

respectively. The interaction between these two fields are considered simultaneously by means 

of the coupled matrices [𝐾𝑢∅] and [𝐾∅𝑢]. As a result, the piezoelectric effects can be calculated 

straightforwardly. 

 

S2: The linear piezoelectric coefficient matrix, the complete expansion of the strain 

gradient and the direct flexoelectric coefficient matrix: 

As discussed in other papers, ZnO and BTO can be approximated as isotropic materials
3,4

. 

In order to simplify the calculations and compare with results from other references, ZnO and 

BTO are assumed to be isotropic materials in this paper. The linear piezoelectric coefficient 

matrix e (in the form of 3×6), the complete expansion of the strain gradient 𝜀𝑗𝑘,𝑙 (in the form of 

18×1) and the direct flexoelectric coefficient matrix (in the form of 3×18) for ZnO and BTO can 

be written as 
5,6

 



𝑒𝑖𝑗𝑘 =  (
0 0 0 0 𝑒15 0

0 0 0 𝑒15 0 0
𝑒31 𝑒31 𝑒33 0 0 0

)                              (S8) 

𝜀𝑗𝑘,𝑙 = [ 𝜀111 𝜀112 𝜀113 𝜀221 𝜀222 𝜀223 𝜀331 𝜀332 𝜀333 

2𝜀231 2𝜀232 2𝜀233   2𝜀131 2𝜀132 2𝜀133 2𝜀121 2𝜀122 2𝜀123 ]  (S9) 

𝜇𝑖𝑗𝑘𝑙

= [
𝜇11 0 0
0 𝜇14 0
0 0 𝜇14

    
𝜇14 0 0
0 𝜇11 0
0 0 𝜇14

   
𝜇14 0 0
0 𝜇14 0
0 0 𝜇11

   
0 0 0
0 0 𝜇111

0 𝜇111 0
   

0 0 𝜇111

0 0 0
𝜇111 0 0

   
0 𝜇111 0

𝜇111 0 0
0 0 0

] (𝑆10) 

 

S3: Material property constants that were used in the potential calculation 

 

Elastic constants 
Relative dielectric 

constants 
Piezoelectric constants 

Flexoelectric 

constants
1
 

Young’s 

modulus E 

(GPa) 

Poisson 

ratio v 
𝑘⊥

r  𝑘||
r  

e31 

(C/m
2
) 

e33 

(C/m
2
) 

e15 

(C/m
2
) 

𝜇𝑒 
nC/m 

ZnO 129.0 0.349 7.77 8.91 -0.51 1.22 -0.45 -1 

BaTiO3 191.0 0.33 2920 168 -2.69 3.65 21.3 -1 

1. Both equivalent flexoelectric constants for ZnO and BaTiO3 are assumed to be -1nC/m. 

 

S4: Calculated nonlinear piezoelectric potential distribution along a ZnO NW 

The piezoelectric polarization 𝑃𝑖 as a function of mechanical strain 𝜀𝑗 (in Voigt notation) 

can be written up to the second order in strain as
7 

𝑃𝑖 = ∑ 𝑒𝑖𝑗𝜀𝑗

6

𝑗=1

+
1

2
∑ 𝐵𝑖𝑗𝑘𝜀𝑗𝜀𝑘

6

𝑗,𝑘=1

                       (S11) 

Where 𝑒𝑖𝑗 is the proper piezoelectric tensor of the unstrained material and 𝐵𝑖𝑗𝑘 represents the 

first order change of the piezoelectric tensor with strain, that is, the second order or nonlinear 

piezoelectric coefficients. The following table is the detailed second order piezoelectric 

coefficients 𝐵𝑖𝑗𝑘 for the wurtzite point group material provided by Reference 7. There are eight 

independent coefficients a-h. The symbol ∙ indicates vanishing coefficients. The rows (columns) 

corresponds to the index i (jk) in 𝐵𝑖𝑗𝑘.  

 11 22 33 44 55 66 12 13 23 45 36 26 16 25 15 35 46 14 24 34 56 



1 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 2b 2a c a-b ∙ ∙ ∙ ∙ 

2 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 2b 2a c a-b 

3 2d 2d g h h d-e 2e f f ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 

 

The eight independent coefficients a-h (C/m
2
) of ZnO are given as followed showing that 

the second order coefficients are typically one order of magnitude larger than the linear ones. 

2a 2b c 2d 2e f g h 𝑒15 𝑒31 𝑒33 

3.0 2.5 1.4 3.5 3.7 0 -14.1 0.9 -0.53 -0.68 1.31 

Using equation (S11), the three components of the electric polarization 𝑃𝑖 are calculated by 

𝑃1 = −0.53𝜀5 − 0.52𝜀3𝜀5, 𝑃2 = −0.53𝜀4 − 0.52𝜀3𝜀4, 𝑃3 = 1.78𝜀3 − 6.174𝜀3
2 + 0.45𝜀4

2 +
0.45𝜀5

2. In each equation, the first term is the linear component of the piezoelectric effect, and 

the rest term(s) are the nonlinear component of the piezoelectric effect (second order 

contributions). According to the polarization equations above, apparently the nonlinear part of 

the piezoelectric effect will make more influence with the increase of the strain, especially the 

direct strain 𝜀3. 



 

Figure S1. Calculated linear and nonlinear piezoelectric potential distributions along a ZnO NW 

in cantilever bending mode under four load conditions, 𝑓𝑦 = 20nN (a), 𝑓𝑦 = 40nN (b), 𝑓𝑦 =

60nN (c), and 𝑓𝑦 = 80nN (d).  

 

Using the decoupled FEA method of the article, first we calculated the body charge density 

and surface charge density of the ZnO NW in cantilever mode, and then applied them on the NW 

finite element model as boundary conditions. To illustrate and validate the relation between the 

nonlinear piezoelectric effect and the strain, we adjusted the quantity of the load, and calculated 

four conditions: 𝑓𝑦 = 20nN, 40nN, 60nN and 80nN, respectively. The potential distribution 

results of the cantilever mode are shown in the Figure S1.  

The figure gives the linear and nonlinear piezoelectric potential distributions along the axial 

cross section under four load conditions, and also gives the potential values of top and bottom 

nodes of the free end. From the results, with the increase of the load, the nonlinear piezoelectric 

effect becomes stronger. The potential maximum in the tension region of the NW moves to the 

fixed end, and conversely the potential minimum in the compression region moves to the free 

end when the load increases. In all the four load conditions, the maximum absolute value of 



potential are all increased, and when 𝑓𝑦 = 80nN the increment exceeds 50%, but the changes of 

potential values of top and bottom nodes of the free end are small because there is little direct 

strain (𝜀1 = 𝜀2 = 𝜀3 = 0) at this end surface.  

The linear and nonlinear piezoelectric potential distribution results of the three-point and 

four-point bending modes are shown in the Figure S2. From the results, because the direct strain 

is less than that of the cantilever mode under the same load 𝑓𝑦 = 80nN, less nonlinear 

piezoelectric effect is induced compared to the cantilever mode. Similarly, to the case of linear 

piezoelectric effect, there is no potential at the middle segment under three-point and four-point 

bending modes. 

 

Figure S2. Calculated linear and nonlinear piezoelectric potential distributions along a ZnO NW 

in the two bending modes. (a) 3-point bending mode, 𝑓𝑦 = 80nN is applied at the middle of the 

NW. (b) 4-point bending mode, 𝑓𝑦 = 40nN is separately applied at two points of the NW middle 

segment.  

 

 

S5: Calculated piezoelectric and flexoelectric potential distribution along a ZnO NW 



 

Figure S3. Calculated piezoelectric and flexoelectric potential distribution along a ZnO NW in 

cantilever bending mode. (a) 3D piezoelectric and flexoelectric potential distributions along a 

ZnO NW beam. (b) The potential distributions along the length direction when μe= -0.302nC/m. 

(c) The potential distributions along the length direction when μe= -0.502nC/m. 

 

S6: Calculated piezoelectric potential distribution along a BTO NW using two methods 

 

Figure S4. Calculated piezoelectric potential distribution along a BTO using two methods. Study 

case of a cantilever bending mode (a-c), 3-point bending mode (d-f), and 4-point bending mode 

(g-i). (a, d, g) 3D piezoelectric potential distributions along a ZnO NW beam calculated by 



decoupled method. (b, e, h) The potential distributions along the length direction calculated by 

decoupled method. (c, f, i) The potential distributions along the length direction calculated by 

fully coupled method. 
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