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S1: Fully coupled finite element analysis (FEA) method

Fully coupled FEA method has been used to calculate the piezoelectric effects in most
commercial software 2. For each node (i) in an element four degrees of freedom are defined,
including three displacements (u;y, u;y, u;,) and one electric potential (@;).

According to the variation principle and virtual work principle, the static governing
equation for piezoelectric materials can be written as
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where {P, }, {T} and {P} are body force, surface traction and point force respectively; and &, &
and Q are body charge, surface charge, point charge respectively.

With the help of the shape functions [N,,] and [Np] in an element, the displacement field {u}
and the electric potential @ can be obtained based on the displacement values {u;} and the
electric potential {@;} at each node by following equations.

{u} = [Ny J{u;} (52)
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After differentiation of equation (S2) and (S3), we can acquire the strain field {e} and the electric
field {E}.

{e} = [Bul{w} (54)

{E} = —[Bgl{0:} (85)
where [B, ] and [By] are the shape functions derivatives.

Substitute equations (S2), (S3), (S4) and (S5) into (S1) and the classic fully coupled FEA
equations for piezoelectric effect is reached as

[Kuul{ui} + [Kupl{@:} = {Fp} + {Fs} + {Fp} (56)
[KpuJ{wi} + [Kppl{®:} = {Qp} + {Qs} + {Qp} (57)
where the terms are defined as below
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Here [K,,,,] and [Kyy] are stiffness matrix and dielectric matrix respectively; [K,p] and [Kp, ] are

piezoelectric matrices. {Fg},{Fs} and {Fp} are body force vector, surface force vector and

concentrated force vector respectively; {Qz},{Qs} and {Qp} are body charge vector, surface

charge vector and point charge vector respectively.

Through equation (S6) and (S7) we can calculate the displacement field and electric field
respectively. The interaction between these two fields are considered simultaneously by means
of the coupled matrices [K, ] and [Ky,]. As a result, the piezoelectric effects can be calculated
straightforwardly.

S2: The linear piezoelectric coefficient matrix, the complete expansion of the strain
gradient and the direct flexoelectric coefficient matrix:

As discussed in other papers, ZnO and BTO can be approximated as isotropic materials®*.
In order to simplify the calculations and compare with results from other references, ZnO and
BTO are assumed to be isotropic materials in this paper. The linear piezoelectric coefficient
matrix e (in the form of 3>6), the complete expansion of the strain gradient ¢, ; (in the form of
18x1) and the direct flexoelectric coefficient matrix (in the form of 3x18) for ZnO and BTO can
be written as >°
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S3: Material property constants that were used in the potential calculation

Elastic constants Relative dielectric Piezoelectric constants Flexoelectrllc
constants constants
Y(()ilHllg’SE Poisson Kt r €31 €33 €15 He
m‘z G‘i,‘;)s ratio v L I (Cmd (Cmd) (Cmd) nC/m
ZnO 129.0 0.349 7.77 8.91 -0.51 1.22 -0.45 -1
BaTiO; 191.0 0.33 2920 168 -2.69 3.65 21.3 -1

1. Both equivalent flexoelectric constants for ZnO and BaTiO; are assumed to be -1nC/m.

S4: Calculated nonlinear piezoelectric potential distribution along a ZnO NW

The piezoelectric polarization P; as a function of mechanical strain ¢; (in Voigt notation)
can be written up to the second order in strain as’
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1
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Where e;; is the proper piezoelectric tensor of the unstrained material and B;j, represents the
first order change of the piezoelectric tensor with strain, that is, the second order or nonlinear
piezoelectric coefficients. The following table is the detailed second order piezoelectric
coefficients B, for the wurtzite point group material provided by Reference 7. There are eight
independent coefficients a-h. The symbol - indicates vanishing coefficients. The rows (columns)
corresponds to the index i (jk) in By .

11 22 33 44 55 66 12 13 23 45 36 26 16 25 15 35 46 14 24 34 56

0| (510}



1 . . . . . . . . . . . . . 2 2a ¢ ab

2 . . . . . . . . . . . . . . . . . 2b 2a ¢ a-b

3 2d 2d g h h de 2 f f

The eight independent coefficients a-h (C/m?) of ZnO are given as followed showing that
the second order coefficients are typically one order of magnitude larger than the linear ones.

2a 2b c 2d 2e f g h eis €31 €33

3.0 2.5 1.4 35 3.7 0 -14.1 0.9 -0.53 -0.68 1.31

Using equation (S11), the three components of the electric polarization P; are calculated by
P, = —0.53¢5 — 0.52¢5¢5, P, = —0.53g, — 0.52¢3¢,, P; = 1.78¢;3 — 6.174c% + 0.45¢2 +
0.45&Z. In each equation, the first term is the linear component of the piezoelectric effect, and
the rest term(s) are the nonlinear component of the piezoelectric effect (second order
contributions). According to the polarization equations above, apparently the nonlinear part of
the piezoelectric effect will make more influence with the increase of the strain, especially the
direct strain &5.
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Figure S1. Calculated linear and nonlinear piezoelectric potential distributions along a ZnO NW
in cantilever bending mode under four load conditions, f, = 20nN (a), f, = 40nN (b), f,, =
60nN (c), and f,, = 80nN (d).

Using the decoupled FEA method of the article, first we calculated the body charge density
and surface charge density of the ZnO NW in cantilever mode, and then applied them on the NW
finite element model as boundary conditions. To illustrate and validate the relation between the
nonlinear piezoelectric effect and the strain, we adjusted the quantity of the load, and calculated
four conditions: £, = 20nN, 40nN, 60nN and 80nN, respectively. The potential distribution
results of the cantilever mode are shown in the Figure S1.

The figure gives the linear and nonlinear piezoelectric potential distributions along the axial
cross section under four load conditions, and also gives the potential values of top and bottom
nodes of the free end. From the results, with the increase of the load, the nonlinear piezoelectric
effect becomes stronger. The potential maximum in the tension region of the NW moves to the
fixed end, and conversely the potential minimum in the compression region moves to the free
end when the load increases. In all the four load conditions, the maximum absolute value of



potential are all increased, and when f,, = 80nN the increment exceeds 50%, but the changes of
potential values of top and bottom nodes of the free end are small because there is little direct
strain (¢; = €, = &5 = 0) at this end surface.

The linear and nonlinear piezoelectric potential distribution results of the three-point and
four-point bending modes are shown in the Figure S2. From the results, because the direct strain
is less than that of the cantilever mode under the same load f,, = 80nN, less nonlinear
piezoelectric effect is induced compared to the cantilever mode. Similarly, to the case of linear

piezoelectric effect, there is no potential at the middle segment under three-point and four-point
bending modes.
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Figure S2. Calculated linear and nonlinear piezoelectric potential distributions along a ZnO NW
in the two bending modes. (a) 3-point bending mode, f,, = 80nN is applied at the middle of the

NW. (b) 4-point bending mode, f, = 40nN is separately applied at two points of the NW middle
segment.

S5: Calculated piezoelectric and flexoelectric potential distribution along a ZnO NW



(b) py=1nC/m, p14=1nC/m, i.e. u.=-0.302nC/m
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(c) #11=0.8nC/m, p14=1.2nC/m, i.e.

Figure S3. Calculated piezoelectric and flexoelectric potential distribution along a ZnO NW in
cantilever bending mode. (a) 3D piezoelectric and flexoelectric potential distributions along a
ZnO NW beam. (b) The potential distributions along the length direction when w= -0.302nC/m.
(c) The potential distributions along the length direction when we=-0.502nC/m.
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S6: Calculated piezoelectric potential distribution along a BTO NW using two methods

Decoupled method Fully coupled method
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Figure S4. Calculated piezoelectric potential distribution along a BTO using two methods. Study
case of a cantilever bending mode (a-c), 3-point bending mode (d-f), and 4-point bending mode
(g-i). (a, d, g) 3D piezoelectric potential distributions along a ZnO NW beam calculated by



decoupled method. (b, e, h) The potential distributions along the length direction calculated by
decoupled method. (c, f, i) The potential distributions along the length direction calculated by
fully coupled method.
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