Supporting Information

Spatial Modeling for Refining and Predicting Surface Potential Mapping with Enhanced Resolution

Qiong Zhang,[†] Xinwei Deng,[‡] Peter Z. G. Qian,^{*,†} and Xudong Wang^{*,¶}

Department of Statistics, University of Wisconsin-Madison, Department of Statistics, Virginia Polytechnic Institute and State University, and Department of Material Science & Engineering, University of Wisconsin-Madison

E-mail: peterq@stat.wisc.edu; xudong@engr.wisc.edu

S1: Mathematical Details

Kriging Method

Let $S = \{s_i, i = 1, ..., n\}$ with $s_i = (u_i, v_i)$ denoting the design sites with observed potential and topography. Give the topography information (including derivative information) on $s_0 = (u_0, v_0) \notin S$, the corresponding potential value can be predicted by

$$\hat{z}(s_0) = \sum_{i=1}^{n} c_i(s_0) z(s_i), \tag{1}$$

^{*}To whom correspondence should be addressed

[†]Department of Statistics, University of Wisconsin-Madison

[‡]Department of Statistics, Virginia Polytechnic Institute and State University

[¶]Department of Material Science & Engineering, University of Wisconsin-Madison

where the $c_i(s_0)$ s are calculated by minimizing

$$\mathbf{E}\left[\sum_{i=1}^{n} c_i(s_0) z(s_i) - z(s_0)\right]^2 \text{ s.t. } \mathbf{E}\left[\sum_{i=1}^{n} c_i(s_0) z(s_i)\right] = \mathbf{E}[z(s_0)].$$
(2)

By solving (3), we have

$$\hat{z}(s_0) = \hat{\mu} + g(s_0)^\top \hat{\beta} + v_{s_0}^\top V_D^{-1} \{ Z_D - \hat{\mu} - G_D \hat{\beta} \},$$
(3)

where

$$Z_D = \{z(s_1), \dots, z(s_n)\}^\top \text{ and } G_D = (g(s_1)^\top, \dots, g(s_n)^\top)^\top,$$
$$v_{s_0} = \{\operatorname{cov}\{\varepsilon(s_0), \varepsilon(s_1)\}, \dots, \operatorname{cov}\{\varepsilon(s_0), \varepsilon(s_n)\}\}^\top,$$
$$(V_D)_{ij} = \operatorname{cov}\{\varepsilon(s_i), \varepsilon(s_j)\}, \text{ for } i, j = 1, \dots, n$$

and $\hat{\mu}$ and $\hat{\beta}$ are generalized least squares estimates for μ and β . The covariance parameters θ_u , θ_v and σ^2 are estimated by maximizing the liklihood function.

Derivative Approximation

The derivative $\partial x / \partial u$ is estimated though the five points method¹

$$\frac{\partial x(u_i, v_j)}{\partial u} = \frac{-x(u_{i+2}, v_j) + 8x(u_{i+1}, v_j) - 8x(u_{i+1}, v_j) + x(u_{i-2}, v_j)}{12(u_i - u_{i-1})}$$

Similarly, we can estimate $\partial x/\partial v$. Since the derivative estimation of the edge can not be achieved, we cut out points measured on u_1 , u_2 , u_{255} and u_{256} or v_1 , v_2 , v_{255} , and v_{256} . Then the model region shrinks to 252×252 grids.

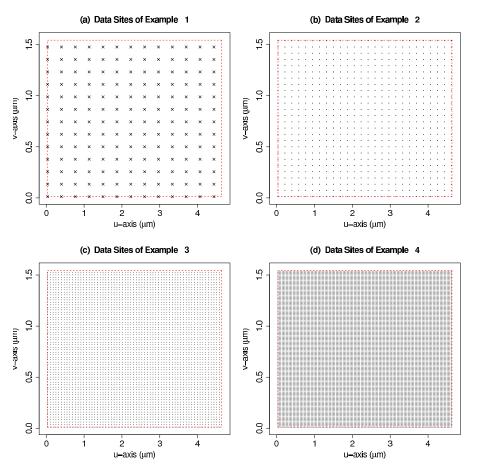


Figure S1: Distribution of the data sites for Examples 1-4 in Table 1.

References

1. Abramowitz, M.; Stegun, I. A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Dover, 1970.